Inference and Parameter Estimation in Gamma Chains
نویسندگان
چکیده
We investigate a class of prior models, called Gamma chains, for modelling depedicies in time-frequencyrepresentations of signals. We assume transform coefficients are drawn independently from Gaussians wherethe latent variances are coupled using Markov chains of inverse Gamma random variables. Exact inference isnot feasible but this model class is conditionally conjugate, so standard approximate inference methods likeGibbs sampling, variational Bayes or sequential Monte Carlo can be applied effectively and efficiently. Weshow how hyperparameters, that determine the coupling between prior variances of transform coefficients,can be optimised. We discuss the pros and cons of various inference schemata (variational Bayes, Gibbssampler and Sequential Monte Carlo) in terms of complexity and optimisation performance for this modelclass. We illustrate the effectiveness of our approach in audio denoising and single channel audio sourceseparation applications.
منابع مشابه
Classical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data
Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...
متن کاملESTIMATION OF SCALE PARAMETER UNDER A REFLECTED GAMMA LOSS FUNCTION
In this paper, the estimation of a scale parameter t under a new and bounded loss function, based on a reflection of the gamma density function, is discussed. The best scale-invariant estimator of tis obtained and the admissibility of all linear functions of the sufficient statistic, for estimating t in the absence of a nuisance parameter, is investigated
متن کاملAdmissible Estimators of ?r in the Gamma Distribution with Truncated Parameter Space
In this paper, we consider admissible estimation of the parameter ?r in the gamma distribution with truncated parameter space under entropy loss function. We obtain the classes of admissible estimators. The result can be applied to estimation of parameters in the normal, lognormal, pareto, generalized gamma, generalized Laplace and other distributions.
متن کاملInference on Pr(X > Y ) Based on Record Values From the Power Hazard Rate Distribution
In this article, we consider the problem of estimating the stress-strength reliability $Pr (X > Y)$ based on upper record values when $X$ and $Y$ are two independent but not identically distributed random variables from the power hazard rate distribution with common scale parameter $k$. When the parameter $k$ is known, the maximum likelihood estimator (MLE), the approximate Bayes estimator and ...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کامل